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Summary

This study explores the roles of genome copy number abnormalities (CNAs) in breast cancer pathophysiology by identifying
associations between recurrent CNAs, gene expression, and clinical outcome in a set of aggressively treated early-stage
breast tumors. It shows that the recurrent CNAs differ between tumor subtypes defined by expression pattern and that strat-
ification of patients according to outcome canbe improved bymeasuring both expression and copy number, especially high-
level amplification. Sixty-six genes deregulated by the high-level amplifications are potential therapeutic targets. Nine of
these (FGFR1, IKBKB, ERBB2, PROCC, ADAM9, FNTA, ACACA, PNMT, and NR1D1) are considered druggable. Low-level
CNAs appear to contribute to cancer progression by altering RNA and cellular metabolism.

Introduction

It is now well established that breast cancers progress through
accumulation of genomic (Albertson et al., 2003; Knuutila et al.,
2000) and epigenomic (Baylin and Herman, 2000; Jones, 2005)
aberrations that enable the development of aspects of cancer
pathophysiology such as reduced apoptosis, unchecked prolif-
eration, increased motility, and increased angiogenesis (Hana-
han andWeinberg, 2000). Discovery of the genes that contribute
to these pathophysiologies when deregulated by recurrent ab-
errations is important to understanding mechanisms of cancer
formation and progression and to guide improvements in cancer
diagnosis and treatment.
Analyses of expression profiles have been particularly power-

ful in identifying distinctive breast cancer subsets that differ in
biological characteristics and clinical outcome (Perou et al.,
1999, 2000; Sorlie et al., 2001, 2003). For example, unsuper-
vised hierarchical clustering of microarray-derived expression

data has identified intrinsically variable gene sets that distin-
guish five breast cancer subtypes—basal-like, luminal A, luminal
B, ERBB2, and normal breast-like. The basal-like and ERBB2
subtypes have been associated with strongly reduced survival
durations in patients treated with surgery plus radiation (Perou
et al., 2000; Sorlie et al., 2001), and some studies have sug-
gested that reduced survival duration in poorly performing sub-
types is caused by an inherently high propensity to metastasize
(Ramaswamy et al., 2003). These analyses already have led to
the development of multigene assays that stratify patients into
groups that can be offered treatment strategies based on risk
of progression (Esteva et al., 2005; Gianni et al., 2005; van ’t
Veer et al., 2002; van de Vijver et al., 2002). However, the predic-
tive power of these assays is still not as high as desired, and the
assays have not been fully tested in patient populations treated
with aggressive adjuvant chemotherapies.
Analyses of breast tumors using fluorescence in situ hybrid-

ization (Al-Kuraya et al., 2004; Kallioniemi et al., 1992; Press

S I G N I F I C A N C E

This study indicates that the accuracy with which breast patients can be stratified according to outcome can be improved by com-
bining analyses of gene expression and genome copy number. Markers for high-level amplification and/or overexpression of genes
at 8p11, 11q13, 17q12, and/or 20q13 are particularly strong predictors of reduced survival duration. Genes in these regions are high-
priority therapeutic targets for treatment of patients that respond poorly to current aggressive therapies. The statistically significant
deregulation of genes involved in RNA and cellular metabolism by low-level CNAs suggests that these events contribute to breast
cancer progression by increasing basal metabolism.
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et al., 2005; Tanner et al., 1994) and comparative genomic
hybridization (Kallioniemi et al., 1994; Loo et al., 2004; Naylor
et al., 2005; Pollack et al., 1999) show that breast tumors also
display a number of recurrent genome copy number aberra-
tions, including regions of high-level amplification that have
been associated with adverse outcome (Al-Kuraya et al., 2004;
Cheng et al., 2004; Isola et al., 1995; Jain et al., 2001; Press
et al., 2005). This raises the possibility of improved patient strat-
ification through combined analysis of gene expression and
genome copy number (Barlund et al., 2000; Pollack et al.,
2002; Ray et al., 2004; Yi et al., 2005). In addition, several studies
of specific chromosomal regions of recurrent abnormality at
17q12 (Kauraniemi et al., 2001, 2003) and 8p11 (Gelsi-Boyer
et al., 2005; Ray et al., 2004) show the value of combined anal-
ysis of genome copy number and gene expression for identifica-
tion of genes that contribute to breast cancer pathophysiology
by deregulating gene expression.
We have extended these studies by performing combined

analyses of genome copy number and gene expression to iden-
tify genes that contribute to breast cancer pathophysiology, with
emphasis on those that are associated with poor response to
current therapies. By associating clinical endpointswith genome
copy number and gene expression, we showed strong associa-
tions between expression subtype and genome aberration com-
position, andwe identified four regions of recurrent amplification
associated with poor outcome in treated patients. Gene expres-
sion profiling revealed 66 genes in these regions of amplification
whose expression levels were deregulated by the high-level
amplifications. We also found a surprising association between
low-level CNAs and upregulation of genes associated with
RNA and protein metabolism that may suggest a mechanism
by which these aberrations contribute to cancer progression.

Results

We assessed genome copy number using BAC array CGH
(Hodgson et al., 2001; Pinkel et al., 1998; Snijders et al., 2001;
Solinas-Toldo et al., 1997) and gene expression profiles using
Affymetrix U133A arrays (Ramaswamy et al., 2003; Reyal
et al., 2005) in breast tumors from a cohort of patients treated
according to the standard of care between 1989 and 1997 (sur-
gery, radiation, hormonal therapy, and treatment with high-dose
adriamycin and cytoxan as indicated). We measured genome
copy number profiles for 145 primary breast tumors and gene
expression profiles for 130 primary tumors, of which 101 were
in common. We analyzed these data to identify recurrent geno-
mic and transcriptional abnormalities, and we assessed associ-
ations with clinical endpoints to identify genomic events that
might contribute to cancer pathophysiology.

Molecular characteristics and associations
Genome copy number and gene expression features
We found that the recurrent genome copy number and gene
expression characteristics measured for the patient cohort in
this study were similar to those reported in earlier studies. We
summarize these briefly.
Figures 1A and 1B show numerous regions of recurrent ge-

nome CNA and nine regions of recurrent high-level amplification
involving regions of chromosomes 8, 11, 12, 17, and 20, while
Figure 2 shows that analysis of these data using unsupervised
hierarchical clustering resolves these tumors into the ‘‘1q/16q’’

(or ‘‘simple’’), ‘‘complex,’’ and ‘‘amplifier’’ genome aberration
subtypes (Fridlyand et al., 2006). The genomic extents of the re-
gions of amplification are listed in Table 1. These were generally
similar to those reported in earlier studies using chromosome
(Kallioniemi et al., 1994) and array CGH (Loo et al., 2004; Naylor
et al., 2005; Pollack et al., 1999, 2002). Several of these regions
of amplification were frequently coamplified. Declaring a Fisher
exact test p value of less than 0.05 for pairwise associations to
be suggestive of possible significant coamplification, we found
coamplification of 8q24 and 20q13 and coamplification of re-
gions at 11q13-14, 12q13-14, 17q11-12, and 17q21-24. These
analyses were underpowered to achieve significance with
proper correction for multiple testing, so these associations are
suggestive but not significant. However, these associations
were consistent with the report of Al-Kuraya et al. (2004), who
showed evidence for coamplification of genes in several of these
regions of amplification including ERBB2, MYC, CCND1, and
MDM2, and that of Naylor et al. (2005) showing coamplification
of 17q12 and 17q25.

Figure S1 (in the Supplemental Data available with this article
online) shows that unsupervised hierarchical clustering of intrin-
sically variable genes resolves the tumors in our study cohort into
the luminal A, luminal B, basal-like, and ERBB2 expression sub-
types previously reported for breast tumors (Perou et al., 1999,
2000; Sorlie et al., 2003). We assessed the genomic characteris-
tics of these expression subtypes in subsequent analyses.
Associations between CNAs and expression
Combined analyses of genome copy number and expression
showed that the recurrent genome CNAs differed between ex-
pression subtypes and identified geneswhose expression levels
were significantly deregulated by the CNAs. Figures 1C–1J
show the recurrent CNAs for each expression subtype. In these
analyses, we assigned each tumor to the expression subtype
cluster (basal-like, ERBB2, luminal A, and luminal B) to which
its expression profile was most highly correlated. We did not
assess aberrations in normal-like tumors due to the small num-
ber of such tumors. Figure 1C shows that the basal-like tumors
were relatively enriched for low-level copy number gains involv-
ing 3q, 8q, and 10p and losses involving 3p, 4p, 4q, 5q, 12q,
13q, 14q, and 15q, while Figure 1D shows that high-level ampli-
fication at any locus was infrequent in these tumors. Figure 1E
shows that ERBB2 tumors were relatively enriched for increased
copy number at 1q, 7p, 8q, 16p, and20qand reduced copynum-
ber at 1p, 8p, 13q, and 18q. Figure 1F shows that amplification of
ERBB2 was highest in the ERBB2 subtype as expected, but
amplification of noncontiguous, distal regions of 17q also was
frequent as previously reported (Barlund et al., 1997). Figure 1G
shows that increased copy number at 1q and 16p and reduced
copy number at 16q were the most frequent abnormalities in
luminal A tumors, while Figure 1H shows that high-level amplifi-
cations at 8p11-12, 11q13-14, 12q13-14, 17q11-12, 17q21-24,
and 20q13 were relatively common in this subtype. Figure 1I
shows that gains of chromosomes 1q, 8q, 17q, and 20q and
losses involving portions of 1p, 8p, 13q, 16q, 17p, and 22q
were prevalent in luminal B tumors, while Figure 1J shows that
high-level amplifications involving 8p11-12, two regions of 8q,
and 11q13-14 were frequent. Bergamaschi et al. (2006) have
reported similar CNA patterns for the luminal A, luminal B, basal,
and ERBB2 expression clusters.

In order to understand how the genome aberrations influence
cancer pathophysiologies, we identified genes that were
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deregulated by recurrent genome CNAs. We took these genes
to be those whose expression levels were significantly associ-
ated with copy number (Holm-adjusted p value < 0.05). These
genes, which represent about 10% of the genome interrogated
by the Affymetrix HGU133A arrays used in this study, and their
copy number-expression level correlation coefficients are listed
in Table S3. This extent of genome-aberration-driven deregula-
tion of gene expression is similar to that reported in earlier stud-
ies (Hyman et al., 2002; Pollack et al., 1999). We tested associ-
ations between copy number and expression level for 186 genes
in regions of amplification at 8p11-12, 11q13-q14, 17q11-12,
and 20q13, and we identified 66 genes in these regions whose
expression levels were correlated with copy number (FDR <
0.01, Wilcoxon rank-sum test; Table 3). These genes define
the transcriptionally important extents of the regions of recurrent
amplification. Twenty-three were from a 5.5 Mbp region at
8p11-12 flanked by SPFH2 and LOC441347, ten were from

a 6.6 Mbp region at 11q13-14 flanked by CCND1 and PRKRIR,
nineteen were from a 3.1 Mbp region at 17q12 flanked by LHX1
and NR1D1, and fourteen were from a 5.4 Mbp region at 20q13
flanked by ZNF217 and C20orf45.
Since the recurrent genome aberrations differed between

expression subtypes, we explored the extent to which the ex-
pression subtypes were determined by genome copy number.
Specifically, we applied unsupervised hierarchical clustering to
intrinsically variable genes after removing genes whose expres-
sion levels were correlated with copy number. Figure 4 shows
that the tumors still resolve into the basal-like and luminal clas-
ses. However, the ERBB2 cluster was lost.

Associations with clinical variables
Associations with histopathology
Figure 2 and Table 2 summarize associations of histopatholog-
ical features with aspects of genome abnormality, including

Figure 1. Recurrent abnormalities in 145 primary
breast tumors

A: Frequencies of genome copy number gain
and loss plotted as a function of genome loca-
tion with chromosomes 1pter to the left and
chromosomes 22qter and X to the right. Vertical
lines indicate chromosome boundaries, and
vertical dashed lines indicate centromere loca-
tions. Positive and negative values indicate
frequencies of tumors showing copy number
increases and decreases, respectively, with
gain and loss as described in the Experimental
Procedures.
B: Frequencies of tumors showing high-level am-
plification. Data are displayed as described in A.
C–J: Frequencies of tumors showing significant
copy number gains and losses as defined in A
(upper member of each pair) or high-level am-
plifications as defined in B (lower member of
each pair) in tumor subtypes defined according
to expression phenotype; C and D, basal-like; E
and F, ERBB2;G and H, luminal A; I and J, luminal
B. Data are displayed as described in A.
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recurrent genome abnormalities, total number of copy number
transitions, fraction of the genome altered (FGA), number of
chromosomal arms containing at least one amplification, num-
ber of recurrent amplicons, and presence of at least one recur-
rent amplification. These analyses showed that ER/PR-negative
tumors were predominantly found in the basal-like expression
and ‘‘complex’’ genome aberration subtypes, respectively.
Node-positive tumors had significantly more amplified arms
and recurrent amplicons than node-negative samples but
showed a much more moderate difference in terms of low-level
copy number transitions. Stage 1 tumors had moderately fewer
low- and high-level changes than higher-stage tumors. The
number of low- and high-level abnormalities increased with
SBR grade. Interestingly, the ‘‘complex’’ tumors showing
many low-level abnormalities were more strongly associated
with aberrant p53 expression than ‘‘amplifying’’ tumors.

‘‘Simple’’ tumors tended to have Ki67 proliferation indices
<10%, while ‘‘complex’’ and ‘‘amplifying’’ tumors typically had
Ki67 indices >10%. The number of amplifications increased sig-
nificantly with tumor size, but the number of low-level changes
did not. We observed no association of genomic changes with
the age at diagnosis.
Associations with outcome
Figure 2 and Table S2 summarize associations between histo-
pathological, transcriptional, and genomic characteristics and
outcome endpoints identified using multivariate regression
analysis. Histopathological features including size and nodal
status were significantly associated with survival duration and/
or disease recurrence in univariate analyses (Table S1) and
were included in the multivariate regressions described below.

The tumor subtypes based on patterns of gene expression or
genome aberration content showedmoderate associations with

Figure 2. Unsupervised hierarchical clustering of
genome copy number profiles measured for
145 primary breast tumors

Green indicates increased genome copy num-
ber, and red indicates decreased genome
copy number. The three major genomic clusters
from left to right are designated 1q/16q, com-
plex, and amplifying. The bar to the left indicates
chromosome locations with chromosome 1pter
to the top and 22qter and X to the bottom. The
locations of the odd-numbered chromosomes
are indicated. The upper color bars indicate bio-
logical and clinical aspects of the tumors. Color
codes are indicated at the bottom of the figure.
Dark blue indicates positive status, and light blue
indicates negative status for node, ER, PR, and
p53 expression. For Ki67, dark blue indicates frac-
tion >0.1, and light blue indicates fraction <0.1.
For size, light blue indicates size <2.2 cm, and
dark blue indicates size >2.2 cm. Color codes
for the expression bar are as follows: orange,
luminal A; dark blue, normal breast-like; light
blue, ERBB2; green, basal-like; yellow, luminal B.
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outcome endpoints. For example, Figure 3A shows that patients
with tumors classified as ERBB2 based on expression pattern
had significantly shorter disease-specific survival than patients
classified as luminal A or luminal B as previously reported (Perou
et al., 2000; Sorlie et al., 2001). Unlike these earlier reports,
patients with tumors classified as basal-like did not do signifi-
cantly worse than patients with luminal or normal breast-like
tumors, although there was a trend in that direction. In addition,
Figure 3B indicates that patients with tumors classified as
‘‘1q/16q’’ based on genome aberration content tended to
have longer disease-specific survival than patients with ‘‘com-
plex’’ or ‘‘amplifier’’ tumors.
We found that high-level amplification was most strongly as-

sociated with poor outcome in this aggressively treated patient
population. Amplification at any of the nine recurrent amplicons
was an independent risk factor for reduced survival duration (p <
0.04) and distant recurrence (p < 0.01) in a multivariate Cox-pro-
portional model that included tumor size and nodal status.
Figure 3C, for example, shows that patients whose tumors
had at least one recurrent amplicon survived a significantly
shorter time than did patients with tumors showing no amplifica-
tions. More specifically, amplifications of 8p11-12 or 17q11-12
(ERBB2) were significantly associatedwith disease-specific sur-
vival and distant recurrence in all patients in multivariate regres-
sions (Table 1). Importantly, we found that stratification accord-
ing to amplification status allowed identification of patients with
poor outcome even within an expression subtype. Figure 3D, for

example, shows that patients with luminal A tumors and ampli-
fication at 8p11-12, 11q13-14, or 20q13 had significantly shorter
disease-specific survival than patients without amplification in
one of these regions (the number of samples in the luminal A
subtype group was too small for multivariate regressions).
Amplification at 8p11-12 wasmost strongly associated with dis-
tant recurrence in the luminal A subtype.
Considering the strong association between amplification and

outcome, we explored the possibility that some of these genes
were overexpressed in tumors in which they were not amplified
and that overexpression was associated with reduced survival
duration in those tumors. Increased expression levels of seven
genes (see Table 3) were associated with reduced survival or
distant recurrence at the p < 0.1 level, but only two, the growth
factor receptor-binding protein GRB7 (17q) and the keratin-as-
sociated protein KTRAP5-9 (11q), at the p < 0.05 level. Interest-
ingly, this analysis also revealed an unexpected association
between reduced expression levels of genes from regions of
amplification and poor outcome (either disease-free survival or
distant recurrence) in tumors without relevant amplifications
(p < 0.05). This was especially prominent for genes from the re-
gion of amplification at 8p11-12 (14 of 23 genes in this region
showed this association), while only two genes from regions of
adverse-outcome-associated amplifications on chromosomes
17q and 20q showed this association. Following this lead, we
tested associations between outcome and reduced copy num-
ber at 8p11-12 in patients in tumors in which 8p11-12 was not

Table 1. Univariate and multivariate associations for individual amplicons and/or disease-specific survival and distant recurrence

Flanking
clone (left)

Flanking
clone (right)

p value, univariate p value, luminal A, univariate p value, multivariate

Amplicon Kb start Kb end survival recurrence survival recurrence survival recurrence

8p11-12 RP11-258M15 RP11-73M19 33579 43001 0.011 0.004 0.022 0.004 0.037 0.006
8q24 RP11-65D17 RP11-94M13 127186 132829 0.830 0.880 0.140 1.0 0.870 0.720
11q13-14 CTD-2080I19 RP11-256P19 68482 71659 0.540 0.410 0.016 0.240 0.660 0.440
11q13-14 RP11-102M18 RP11-215H8 73337 78686 0.230 0.150 0.016 0.240 0.360 0.190
12q13-14 BAL12B2624 RP11-92P22 67191 74053 0.250 0.260 0.230 0.098 0.920 0.960
17q11-12 RP11-58O8 RP11-87N6 34027 38681 0.004 0.004 1.0 1.0 0.022 0.008
17q21-24 RP11-234J24 RP11-84E24 45775 70598 0.960 0.920 0.610 0.290 0.530 0.630
20q13 RMC20B4135 RP11-278I13 51669 53455 0.340 0.800 0.048 0.140 0.590 0.970
20q13 GS-32I19 RP11-94A18 55630 59444 0.087 0.230 0.048 0.140 0.060 0.220
Any amplicon 0.005 0.003 0.024 0.120 0.034 0.009

Also shown are the chromosomal positions of the beginning and ends of the amplicons and the flanking clones. Associations are shown for the entire sample
set and for luminal A tumors (univariate associations only).

Table 2. Associations of genomic variables with clinical features

Fraction of
genome altered1

Total number
of transitions1

Number of
amplified arms1

Number of
recurrent amplicons1

Presence of
recurrent amplicons2

1. ER (negative versus positive) <0.001 <0.001 0.376 0.147 0.482
2. PR (negative versus positive) 0.005 <0.001 <0.050 0.319 0.390
3. Nodes (positive versus negative) 0.053 0.106 0.012 0.012 0.008
4. Stage (>1 versus 1) 0.013 0.052 0.045 0.312 0.368
5. ERBB2 (positive versus negative) 0.650 0.830 0.015 <0.001 <0.001
6. Ki67 (>0.1 versus <0.1) 0.013 0.031 0.024 0.010 0.005
7. P53 (positive versus negative) 0.001 <0.001 0.043 0.573 0.171
8. Size 0.339 0.088 0.016 0.005 0.015
9. Age at Dx 0.767 0.361 0.223 0.905 0.947
10. SBR grade <0.001 <0.001 0.008 0.206 0.035
11. Expression subtype <0.001 <0.001 0.002 0.003 <0.001
12. Genomic subtype <0.001 <0.001 <0.001 <0.001 <0.001

1Kruskal-Wallis test (1–7, 11, and 12), significance of robust linear regression standardized coefficient (8–10).
2Fisher exact test (1–7, 11, and 12), significance of robust linear regression standardized coefficient (8–10).
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amplified. Figure 3E shows that patients with reduced copy
number at 8p11-12 did worse than patients without a deletion
in this region. Figure 3F shows that patients in the overall study
with high-level amplification or deletion at 8p11-12 survived
significantly shorter survival (p = 0.0017) than patients without
either of those events.
We also tested for associations of low-level genome copy

number changeswith theoutcomeendpoints. Themost frequent
low-level copy number changes (e.g., increased copy number at
1q, 8q, and 20q or decreased copy number at 16q) were not sig-
nificantly associated with outcome endpoints. However, we did
find a significant association of the loss of a small region on 9q22
with adverse outcome, both disease-specific survival and distal
recurrence, which persisted even after correction for multiple
testing (p < 0.05, multivariate Cox regression). This region is de-
fined by BACs, CTB-172A10, and RP11-80F13. We also found
a marginally significant association between fraction of the
genome lost and disease-specific survival in luminal A tumors
(p < 0.02 and < 0.06 for univariate and multivariate regression,
respectively, Cox-proportional regression).
We used the programGoStat (Beissbarth and Speed, 2004) to

identify the Gene Ontology (GO) classes of 1444 unique genes

(1734 probe sets) whose expression levels were preferentially
modulated by low-level CNAs compared to 3026 probe sets
whose expression levels did not show associations with copy
number. The GO categories most significantly overrepresented
in the set of genes with a dosage effect compared to genes with
no or minimal dosage effect involved RNA processing (Holm ad-
justed p value < 0.001), RNA metabolism (p < 0.01), and cellular
metabolism (p < 0.02).

Discussion

This paper describes a comprehensive analysis of gene expres-
sion and genome copy number in aggressively treated primary
human breast cancers performed in order to (1) identify genomic
events that can be assayed to better stratify patients according
to clinical behavior, (2) develop insights into how molecular ab-
errations contribute to breast cancer pathogenesis, and (3) dis-
cover genes that might be therapeutic targets in patients that do
not respond well to current therapies. An accompanying paper
in this issue ofCancer Cell shows that many of these aberrations
are found in subsets of breast cancer cell lines that can be ma-
nipulated to confirm functions suggested by associations with
pathophysiology established here (Neve et al., 2006).

Molecular markers that predict outcome
Our combined analyses of genome copy number and gene ex-
pression focused on tumors from patients treated more aggres-
sively than those in previously published studies (Perou et al.,
2000; Sorlie et al., 2001) (i.e., with surgery, radiation of the sur-
gical margins, hormonal therapy for ER-positive disease, and
aggressive adjuvant chemotherapy as indicated) and revealed
two important associations.

First, they showed that the survival of patients with tumors
classified as basal-like according to expression pattern did not
have significantly worse outcome than patients with luminal or
normal-like tumors in this tumor set, unlike previous reports
(Perou et al., 2000; Sorlie et al., 2001) (see Figure 3A), although
there was a trend toward lower survival. However, patients
with ERBB2-positive tumors did have significantly increased
death from disease and shorter recurrence-free survival in ac-
cordance with the earlier studies. This may indicate that the ag-
gressive chemotherapy employed for treatment of the predomi-
nantly ER-negative basal-like tumors increased survival duration
in these patients relative to patients with tumors in the other sub-
groups. Thus, outcome for patients with basal-like tumors may
not be asbadas indicatedbyearlier prognostic studies of patient
populations that did not receive aggressive chemotherapy for
progressive disease. Alternately, the differences may be due to
differences in cohort selection. In either case, this result empha-
sizes the need to interpret the performance ofmolecularmarkers
for patient stratification in the context of specific treatment reg-
imens and in molecularly defined cohorts.

Second,we found that aggressively treatedpatientswith high-
level amplification had worse outcome than did patients without
amplification (see Figure 3C). This is consistent with earlier CGH
and single-locus analyses of associations of amplification with
poor prognosis (Al-Kuraya et al., 2004; Blegen et al., 2003;
Callagy et al., 2005; Gelsi-Boyer et al., 2005; Weber-Mangal
et al., 2003). Moreover, the presence of high-level amplification
was an indicator of poor outcome, even within patient subsets
defined by expression profiling. This was particularly apparent

Figure 3. Kaplan-Meyer plots showing survival in breast tumor subclasses

A:Disease-specific survival in 130 breast cancer patients whose tumors were
defined using expression profiling to be basal-like (green curve), luminal A
(yellow curve), luminal B (orange curve), and ERBB2 (purple curve) class.
B: Disease-specific survival of patients with tumors classified by genome
copy number aberration analysis as 1q/16q (green), complex (red), and
amplifying (blue).
C: Survival of patients with (red curve) and without (green curve) amplifica-
tion at any region of recurrent amplification.
D: Survival of patients whose tumors were defined using expression profiling
to be luminal A tumors with (red curve) andwithout (green curve) amplifica-
tion at 8p11-12, 11q13, and/or 20q.
E: Survival of patients whose tumors were not amplified at 8p11-12 and had
normal (green curve) or reduced (red curve) genome copy number at
8p11-12.
F: Survival of patients whose tumors had normal (green curve) or abnormal
(red curve) genome copy number at 8p11-12.
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for luminal A tumors, as illustrated in Figure 3D, where patients
whose tumors had high-level amplification at 8p11-12, 11q13-
14, or 20q13 did significantly worse than patients without am-
plification. This suggests that stratification according to both
expression level and copy number will identify patients that
respond poorly to current therapeutic treatment strategies.

Mechanisms of disease progression
Our combined analyses of genome copy number and gene ex-
pression showed substantial differences in recurrent genome
abnormality composition between tumors classified according
to expression pattern and revealed that over 10% of the genes
interrogated in this study had expression levels that were highly
significantly associated with genome copy number changes.
Most of the gene expression changes were associated with
low-level changes in genome copy number, but 66were deregu-
lated by the high-level amplifications associated with poor
outcome. These analyses provide insights into the etiology of
breast cancer subtypes, suggest mechanisms by which the
low-level copy number changes contribute to cancer patho-
genesis, and identify a suite of genes that contribute to cancer
pathophysiology.
Breast cancer subtypes
Figures 1 and 2 show that recurrent genome copy number aber-
rations differ substantially between tumors classified according
to expression pattern as described previously (Perou et al.,
1999). This is consistent with a model of cancer progression in
which the expression subtype and genotype are determined
by the cell type and stage of differentiation that survives telo-
mere crisis and acquires sufficient proliferative advantage to
achieve clonal dominance in the tumor (Chin et al., 2004). This
model suggests that the genome CNA spectrum is selected to
be most advantageous to the progression of the specific cell
type that achieves immortality and clonal dominance. In this
model, the recurrent genome CNA composition can be consid-
ered an independent subtype descriptor—much as genome
CNA composition can be considered to be a cancer type de-
scriptor (Knuutila et al., 2000). The independence of the genome
CNA composition and basal and luminal expression subtypes is
clear from Figure 4, which shows that the breast tumors divide
into basal and luminal subtypes using unsupervised hierarchical
clustering even after all transcripts showing associations with
copy number are removed from the data set. Of course, the
ERBB2 subtype is lost, since that subtype is strongly driven
by ERBB2 amplification.
Low-level abnormalities
The most frequent low-level copy number changes were not as-
sociated with reduced survival duration, although some were
associated with other markers usually associated with survival
such as tumor size, nodal status, and grade (see Table 2). This
raises the question of why the recurrent low-level CNAs are se-
lected. GOstat analyses of the genes deregulated by these ab-
normalities showed that numerous genes involved in RNA and
cellular metabolism were significantly upregulated by these
events. Interestingly, we found these same GO classes to be
significantly altered in a collection of breast cancer cell lines
and in a study of ovarian cancer (W.-L.K., unpublished data).
We also observed that many of the recurrent low-level aberra-
tions matched the low-level copy number changes in the
ZNF217-transfected human mammary epithelial cells that
emerged after passage through telomere crisis having achieved

clonal dominance in the culture (Chin et al., 2004; see Fig-
ure S2)—presumably because the aberrations they carried con-
ferred a proliferative advantage. This suggests to us that the
low-level CNAs are selected during early cancer formation be-
cause they increase basal metabolism, thereby providing a net
survival/proliferative advantage to the cells that carry them.
This idea is supported by a report that some of these same clas-
ses of genes were associated with proliferative fitness yeast
(Deutschbauer et al., 2005). That study described analyses of
proliferative fitness in the complete set of Saccharomyces cere-
visiae heterozygous deletion strains and reported reduced
growth rates for strains carrying deletions in genes involved in
RNA metabolism and ribosome biogenesis and assembly.
High-level amplification
We found that high-level amplifications were associated with re-
duced survival duration and/or distant recurrence overall and
within the luminal A expression subgroup. We identified 66
genes in these regions whose expression levels were correlated
with copy number. GO analyses of those genes showed that
they are involved in aspects of nucleic acid metabolism, protein
modification, signaling, and the cell cycle and/or protein trans-
port, and evidence is mounting that many if not most of these
genes are functionally important in the cancers in which they
are amplified and overexpressed (see Table 3). Indeed,
published functional studies in model systems already have im-
plicated eleven of these genes in diverse aspects of cancer
pathophysiology. Six of these are encoded in the region of am-
plification at 8p11. These encode the RNA-binding protein
LSM1 (Fraser et al., 2005), the receptor tyrosine kinase FGFR1
(Braun and Shannon, 2004), the cell-cycle-regulatory protein
TACC1 (Still et al., 1999), the metalloproteinase ADAM9 (Maz-
zocca et al., 2005), the serine/threonine kinase IKBKB (Greten
and Karin, 2004; Lam et al., 2005), and the DNA polymerase
POLB (Clairmont et al., 1999). Functionally validated genes in
the region of amplification at 11q13 include the cell-cycle-regu-
latory protein CCND1 (Hinds et al., 1994) and the growth factor
FGF3 (Okunieff et al., 2003). Functionally important genes in the
region of amplification at 17q include the transcription regulation
protein PPARBP (Zhu et al., 2000), the receptor tyrosine kinase
ERBB2 (Slamon et al., 1989), and the adaptor protein GRB7
(Tanaka et al., 2000), while the AKT-pathway-associated tran-
scription factor ZNF217 (Huang et al., 2005; Nonet et al.,
2001) and the RNA-binding protein REA1 (Babu et al., 2003)
are functionally validated genes encoded in the region of ampli-
fication at 20q13. Further support for the functional importance
of seven of these genes (TACC1, ADAM9, IKBKB, POLB,
CCND1, GRB7, and ZNF217) in oncogenesis comes from the
observation that they are within 100 Kbp of sites of recurrent tu-
morigenic viral integration in the mouse (Akagi et al., 2004), and
three (IKBKB, CCND1, and GRB7) are within 10 Kbp of such
a site. Taking proximity to a site of recurrent tumorigenic viral in-
tegration as evidence for a role in cancer genesis implicates an
additional 13 genes or transcripts (see Table 3).
The biological roles of the genes deregulated by recurrent

high-level amplification are diverse and vary between regions
of amplification. For example, genes deregulated by amplifica-
tion at 11q13 and 17q11-12 predominantly involved signaling
and cell cycle regulation, while genes deregulated by amplifica-
tion at 8p11-12 and 20q13 were of mixed function but were
associated most frequently with aspects of nucleic acid metab-
olism. The predominance of genes involved in nucleic acid
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Table 3. Functional characteristics of genes in recurrent amplicons associated with reduced survival duration in breast cancer

Gene Ch Mbp
p value,
amplification

p value,
disease
free
survival

p value,
distant
recurrence Transcript description

Cancer function
reference

Kbp to site
of viral
integration Druggable?

SPFH2** 8 37.6 7.08E-07 0.053 0.003 chromosome 8 open reading
frame 2

PROSC** 8 37.7 2.28E-05 0.390 0.043 racemase and epimerase
activity, energy metabolism

yes

BRF2** 8 37.8 1.20E-05 0.004 0.003 transcription factor regulating
nucleic acid metabolism

RAB11FIP1 8 37.8 7.77E-04 0.620 0.250 GTPase-activating protein
involved in signal transduction

ASH2L** 8 38.0 5.88E-06 0.036 0.002 DNA-binding protein involved in
nucleic acid metabolism

LSM1 8 38.0 6.79E-06 0.300 0.130 RNA-binding protein involved in
nucleic acid metabolism

Fraser et al., 2005;
Takahashi et al., 2002

BAG4 8 38.1 8.73E-07 0.330 0.063 BCL2-associated chaperone
protein involved in apoptosis

Gehrmann et al., 2005

DDHD2** 8 38.1 4.40E-06 0.008 0.006 phospholipase involved in
energy metabolism

WHSC1L1 8 38.2 9.04E-06 0.760 0.730 nucleic acid binding
FGFR1** 8 38.3 1.04E-04 0.025 0.540 receptor tyrosine kinase

involved in signal
transduction

Braun and Shannon,
2004; Ray et al., 2004

yes/
PD173074

TACC1** 8 38.7 6.72E-03 0.020 0.043 cell cycle control protein
associated with signal
transduction

Still et al., 1999 44.1/Plekha2

ADAM9 8 38.9 1.91E-04 0.930 0.960 metalloproteinase associated
with protein metabolism

Mazzocca et al., 2005 75/Plekha2 yes

GOLGA7 8 41.4 7.10E-05 0.140 0.170 integral membrane protein
associated with transport

SLD5 8 41.4 1.41E-03 0.780 0.460 unknown
MYST3** 8 41.8 5.74E-05 0.006 0.022 transcription-regulatory

protein involved in nucleic
acid metabolism

AP3M2** 8 42.0 4.43E-05 0.038 0.220 adapter protein associated
with transport

IKBKB** 8 42.1 7.73E-05 0.002 0.002 serine/threonine kinase
associated with
signal transduction

Greten and Karin, 2004;
Lam et al., 2005

3.1/AK018683 yes/
PS-1145

POLB** 8 42.2 2.15E-04 0.001 0.008 DNA polymerase involved in
nucleic acid metabolism

Clairmont et al., 1999 70.1/AK018683

VDAC3** 8 42.3 9.93E-05 0.056 0.290 voltage-dependent anion
channel associated
with transport

SLC20A2 8 42.3 1.98E-03 0.170 0.240 membrane transport protein
THAP1** 8 42.7 7.13E-03 0.190 0.097 unknown
FNTA** 8 42.9 3.13E-03 0.067 0.370 prenyltransferase associated

with protein metabolism
yes

LOC441347 8 43.0 7.77E-04 0.180 0.810 unknown
CCND1 11 69.2 1.50E-06 0.560 0.770 cell cycle control protein

involved in signal transduction
Hinds et al., 1994 0.4/Fgf3

FGF3 11 69.4 1.84E-03 0.920 0.420 growth factor involved in signal
transduction

Okunieff et al., 2003

FADD 11 70.0 7.42E-03 0.200 0.250 adapter molecule associated
with signal transduction

PPFIA1 11 70.0 1.53E-05 0.670 0.550 anchor protein associated with
cell growth and/or maintenance

CTTN* 11 70.0 2.69E-04 0.450 0.100 cytoskeletal protein associated with
cell growth and/or maintenance

NADSYN1 11 70.9 3.42E-04 0.290 0.990 unknown
KRTAP5-9* 11 71.0 3.72E-03 0.035 0.050 cytoskeletal protein associated

with cell growth and/or
maintenance

FOLR3 11 71.6 1.54E-03 0.730 0.490 cell surface receptor associated
with signal transduction

NEU3 11 74.4 9.73E-03 0.460 0.370 neuraminidase associated with
protein metabolism

N-PAC** 11 75.8 4.39E-03 0.110 0.038 protein kinase
LHX1* 17 35.5 1.41E-03 0.250 0.018 transcription factor associated

with nucleic acid metabolism
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Table 3. Continued

Gene Ch Mbp
p value,
amplification

p value,
disease
free
survival

p value,
distant
recurrence Transcript description

Cancer function
reference

Kbp to site
of viral
integration Druggable?

ACACA 17 35.6 8.24E-03 0.850 0.850 carboxylase associated
with energy metabolism

yes

DDX52 17 36.2 3.47E-04 0.300 0.560 RNA-binding protein associated
with nucleic acid metabolism

TBC1D3 17 36.7 5.25E-05 0.170 0.170 unknown
SOCS7 17 36.9 4.00E-03 0.450 0.600 adapter molecule associated

with signal transduction
PCGF2 17 37.3 3.10E-04 0.760 0.850 transcription-regulatory protein

associated with nucleic acid
metabolism

5.4/Lasp1

PSMB3 17 37.3 8.01E-03 0.390 0.810 ubiquitin proteasome system
protein associated with
protein metabolism

24.4/Lasp1

PIP5K2B 17 37.3 5.07E-03 0.400 0.380 lipid kinase associated with
signal transduction

47.5/Lasp1

FLJ20291 17 37.3 3.14E-03 0.850 0.920 unknown 72.4/Lasp1
PPARBP* 17 37.9 2.13E-04 0.089 0.260 transcription-regulatory protein

associated with signal
transduction

Zhu et al., 2000

STARD3 17 38.2 3.40E-09 0.420 0.820 mitochondrial carrier protein
associated with transport

52.1/Znfn1a3

TCAP 17 38.2 1.26E-05 0.640 0.700 structural protein associated
with cell growth and/or
maintenance

23.1/Znfn1a3

PNMT* 17 38.2 2.02E-06 0.630 0.010 methyltransferase associated
with metabolism and energy

21.1/Znfn1a3 yes

PERLD1 17 38.2 3.41E-09 0.930 0.840 membrane protein of unknown
function

18.2/Znfn1a3

ERBB2 17 38.2 3.41E-09 0.110 0.560 receptor tyrosine kinase
associated with signal
transduction

Slamon et al., 1989 yes/
trastuzumab,
lapatinib

GRB7* 17 38.3 7.28E-08 0.044 0.300 adapter molecule associated
with signal transduction

Tanaka et al., 2000 10.8/Znfn1a3

GSDML 17 38.4 8.36E-06 0.710 0.690 unknown 48.8/Znfn1a3
PSMD3 17 38.5 4.25E-03 0.250 0.510 ubiquitin proteasome system

protein associated with
protein metabolism

32.8/Znfn1a3

NR1D1 17 38.6 1.28E-03 0.210 0.750 nuclear receptor associated
with signal transduction

73.4/Cdc6 yes

ZNF217 20 52.9 5.02E-06 0.650 0.650 transcription factor associated
with signal transduction

Nonet et al., 2001 39.3/Zfp217

BCAS1 20 53.2 4.93E-03 0.290 0.140 unknown 70.9/Zpf217
CSTF1 20 55.7 7.15E-03 0.150 0.330 pre-mRNA processing
RAE1 20 56.6 3.56E-05 0.360 0.420 RNA-binding protein associated

with nucleic acid metabolism
Babu et al., 2003

RNPC1 20 56.6 1.19E-03 0.750 0.830 RNA-binding protein associated
with nucleic acid metabolism

PCK1 20 56.8 9.78E-03 0.250 0.330 phosphotransferase associated
with energy and metabolism

TMEPAI* 20 56.9 1.21E-04 0.085 0.077 unknown
RAB22A 20 57.6 3.15E-05 0.990 0.340 GTPase associated with signal

transduction
VAPB 20 57.6 3.78E-05 0.360 0.260 membrane transport protein
STX16 20 57.9 2.63E-05 0.220 0.790 transport/cargo protein
NPEPL1 20 57.9 3.35E-05 0.270 0.800 aminopeptidase associated

with protein metabolism
GNAS** 20 58.1 6.60E-03 0.052 0.058 G protein associated with signal

transduction
TH1L 20 58.2 1.14E-04 0.530 0.800 transcription-regulatory protein

associated with nucleic acid
metabolism

36.7/Thil

C20orf45 20 58.3 6.29E-04 0.970 0.790 unknown 88.7/Th1l

Functional annotationwas based on the Human Protein Reference Database (http://hprd.org/). Genesmarkedwith an asterisk are associatedwith reduced
survival duration or distant recurrence when overexpressed in nonamplifying tumors. Genes marked with two asterisks are significantly associated with re-
duced survival duration or distant recurrence (p < 0.05) when downregulated in nonamplifying tumors. Distances to sites of recurrent viral integration were
determined from published information (Akagi et al., 2004). The last column identifies genes that have predicted protein folding characteristics that suggest
that they might be druggable (Russ and Lampel, 2005).
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metabolism in the region of amplification at 8p11-12 was espe-
cially strong. Interestingly, the region of recurrent amplification
at 8p11-12 described above was reduced in copy number in
some tumors, and this event also was associated with poor out-
come. This raises the possibility that poor clinical outcome in
tumors with 8p11-12 abnormalities is due to increased genome
instability/mutagenesis resulting from either up- or downregula-
tion of genes encoded in this region. This concept is supported
by studies in yeast showing that up- or downregulation of genes
involved in chromosome integrity and segregation can produce
similar instability phenotypes (Ouspenski et al., 1999).

Therapeutic targets
The 66 genes we found to be deregulated by the high-level
amplifications associated with poor outcome are particularly in-
teresting as therapeutic targets for treatment of patients that are
refractory to current therapies. Small-molecule or antibody-
based inhibitors have already been developed for FGFR1
(PD173074; Ray et al., 2004), IKBKB (PS-1145; Lam et al.,
2005), and ERBB2 (Trastuzumab; Vogel et al., 2002), and six
others (PROCC, ADAM9, FNTA, ACACA, PNMT, and NR1D1)
are considered to be druggable based on the presence of
predicted protein folds that favor interactions with drug-like
compounds (Russ and Lampel, 2005). Taking ERBB2 as the
paradigm (recurrently amplified, overexpressed, associated
with outcome and with demonstrated functional importance in

cancer) suggests FGFR1, TACC1, ADAM9, IKBKB, PNMT, and
GRB7 as high-priority therapeutic targets in these regions of
amplification.

Experimental procedures

Tumor characteristics
Frozen tissue from UC San Francisco and the California Pacific Medical Cen-
ter collected between 1989 and 1997 was used for this study. Tissues were
collected under IRB-approved protocols with patient consent. Tissues were
collected, frozen over dry icewithin 20min of resection, and stored at280!C.
An H&E section of each tumor sample was reviewed, and the frozen block
wasmanually trimmed to remove normal and necrotic tissue from the periph-
ery. Clinical follow-up was available with a median time of 6.6 years overall
and 8 years for censored patients. Tumors were predominantly early stage
(83% stage I and II) with an average diameter of 2.6 cm. About half of the
tumors were node positive, 67% were estrogen receptor positive, 60% re-
ceived tamoxifen, and half received adjuvant chemotherapy (typically adria-
mycin and cytoxan). Clinical characteristics of the individual tumors are
provided together with expression and array CGH profiles in the CaBIG re-
pository and at http://cancer.lbl.gov/breastcancer/data.php.

Array CGH
Each sample was analyzed using Scanning and OncoBAC arrays. Scanning
arrays were comprised of 2464 BACs selected at approximately megabase
intervals along the genome as described previously (Hodgson et al., 2001;
Snijders et al., 2001). OncoBAC arrays were comprised of 960 P1, PAC, or
BAC clones. About three-quarters of the clones on the OncoBAC arrays
contained genes and STSs implicated in cancer development or progres-
sion. All clones were printed in quadruplicate. DNA samples for array CGH
were labeled generally as described previously (Hackett et al., 2003; Hodg-
son et al., 2001; Snijders et al., 2001). Briefly, 500 ng each of cancer and
normal female genomic DNA sample was labeled by random priming with
CY3- andCY5-dUTP, respectively; denatured; and hybridized with unlabeled
Cot-1 DNA to CGH arrays. After hybridization, the slides were washed and
imaged using a 16-bit CCD camera through CY3, CY5, and DAPI filters (Pin-
kel et al., 1998).

Expression profiling
Expression profiling was accomplished using the Affymetrix High Through-
put Array (HTA) GeneChip system, in which target preparations, washing,
and staining were carried out in a 96-well format. Detailed methods are de-
scribed in the Supplemental Data.

Statistical considerations
Data processing
Array CGH data image analyses were performed as described previously
(Jain et al., 2002). In this process, an array probe was assigned a missing
value for an array if there were fewer than two valid replicates or the standard
deviation of the replicates exceeded 0.2. Array probes missing in more than
50% of samples in OncoBAC or scanning array data sets were excluded in
the corresponding set. Array probes representing the same DNA sequence
were averaged within each data set and then between the two data sets. Fi-
nally, the two data sets were combined, and the array probesmissing inmore
than 25% of the samples, unmapped array probes, and probes mapped to
chromosome Y were eliminated. The final data set contained 2149 unique
probes. For Affymetrix data, multichip robust normalization was performed
using RMA software (Irizarry et al., 2003). Transcripts assessed on the arrays
were classified into two groups using Gaussian model-based clustering by
considering the joint distribution of the median and standard deviation of
each probe set across samples. During this process, computational de-
mandswere reduced by randomly sampling and clustering 2000 probe inten-
sities using mclust (Yeung et al., 2001, 2004) with two clusters and unequal
variance. Next, the remaining probe intensities were classified into the newly
created clusters using linear discriminant analysis. The cluster containing
probe intensities with smaller mean and variance was defined as ‘‘not ex-
pressed,’’ and the second cluster was defined as ‘‘expressed.’’
Characterizing copy number changes
The sample profiles were segmented into the levels of equal copy number
common to the whole genome, and the copy number transitions,

Figure 4. Results of unsupervised hierarchical clustering of 130 breast tumors
using intrinsically variable gene expression but excluding any transcripts
whose levels were significantly associated with genome copy number

Red indicates increased expression, and green indicates reduced expres-
sion. An annotated version is provided as Figure S3.
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amplifications, and frequency of alterations were determined using previ-
ously described methodologies (Snijders et al., 2003; Fridlyand et al.,
2006). The detailed approaches are described in the Supplemental Data.
Clustering of genome copy number profiles
Genome copy number profiles were clustered using smoothed imputed data
with outliers present. Agglomerative hierarchical clustering with Pearson’s
correlation as a similarity measure and the Ward method to minimize sum
of variances were used to produce compact spherical clusters (Hartigan,
1975). The number of groups was assessed qualitatively by considering
the shape of the clustering dendogram.
Expression subtype assignment
Tumors were classified according to expression phenotype (basal, ERBB2,
luminal A, luminal B, and normal-like) by assigning each tumor to the subtype
of the cluster defined by hierarchical clustering of expression profiles for 122
samples published by Sorlie et al. (2003) to which it had the highest Pearson’s
correlation. The correlation was computed using the subset of Stanford
intrinsically variable genes common to both data sets. For details, refer to
the Supplemental Data.
Association of copy number with survival
Stage 4 samples were excluded from all the outcome-related analyses, and
disease-specific survival and time to distant recurrence were used as the two
endpoints. Significance of the standardized regression coefficient Cox-pro-
portional model was used to determine clinical (univariate and multivariate
analyses) and genomic variables (individual clones, instability summarymea-
sures, and recurrent amplicon status) associated with outcome. p values for
individual clones were adjusted using FDR. The significance was declared at
p < 0.05. For details, see the Supplemental Data.
Association of copy number with expression
The presence of an overall dosage effect was assessed by subdividing each
chromosomal arm into nonoverlapping 20 Mb bins and computing the aver-
age of cross-Pearson’s-correlations for all gene transcript-BAC probe pairs
that mapped to that bin. We also calculated Pearson’s correlations and cor-
responding p values between expression level and copy number for each
gene transcript. Each transcript was assigned an observed copy number
of the nearest mapped BAC array probe. Eighty percent of gene transcripts
had a nearest clone within 1 Mbp, and 50% had a clone within 400 Kbp. Cor-
relation between expression and copy number was only computed for the
gene transcripts whose absolute assigned copy number exceeded 0.2 in
at least five samples. This was done to avoid spurious correlations in the
absence of real copy number changes. We used conservative Holm p value
adjustment to correct for multiple testing. Gene transcripts with an adjusted
p value <0.05 were considered to have expression levels that were highly
significantly affected by gene dosage. This corresponded to a minimum
Pearson’s correlation of 0.44.
Associations of transcription and CNA in regions of amplification
with outcome in tumors without particular amplicons
We assessed the associations of levels of transcripts in regions of amplifica-
tions with survival or distant recurrence in tumorswithout amplifications in or-
der to find genes that might contribute to progression when deregulated by
mechanisms other than amplification (e.g., we assessed associations be-
tween expression levels of the genes mapping to the 8p11-12 amplicon
and survival in samples without 8p11-12 amplification). We performed sepa-
rate Cox-proportional regressions for disease-specific survival and distant
recurrence. Stage 4 samples were excluded from all analyses.
Testing for functional enrichment
We used the gene ontology statistics tool GoStat (Beissbarth and Speed,
2004) to test whether the gene transcripts with the strongest dosage effects
were enriched for particular functional groups. The p values were adjusted
using false discovery rate. The categories were considered significantly over-
represented if the FDR-adjusted p value was less than 0.001. Since ex-
pressed genes were significantly more likely to show dosage effects than
nonexpressed genes (p value < 2.2E-16, Wilcoxon rank-sum test), GoStat
comparisons were performed only for expressed genes. Specifically, GO
categories for 1734 expressed probes with significant dosage effect (Holm
p value < 0.05) were compared with those for 3026 expressed probes with
no dosage effect (Pearson’s correlation < 0.1).

Microarray data
The raw data for expression profiling are available at ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/) with accession number E-TABM-158.

Clinical characteristics of the individual tumors as well as array CGH and ex-
pressionprofiles are available in theCaBIG repository (http://caarraydb.nci.nih.
gov/caarray/publicExperimentDetailAction.do?expId=1015897589973255), at
http://cancer.lbl.gov/breastcancer/data.php, and in the Supplemental Data.

Supplemental data
The Supplemental Data include Supplemental Experimental Procedures,
three supplemental figures, and three supplemental tables and can be found
with this article online at http://www.cancercell.org/cgi/content/full/10/6/
529/DC1/.
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